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Abstract In contrast, agents using different dialogue strategies

can be compared with measures such as inappropri-

This paper presents PARADISE (PARAdigm ate utterance ratio, turn correction ratio, concept accu-
for Dlalogue System Evaluation), a general racy, implicit recovery and transaction success (Danieli
framework for evaluating spoken dialogue and Gerbino, 1995 Hirschman and Pao, 1993; Po-
agents. The framework decouples task require-  |ifroni et al., 1992 Simpson and Fraser, 1993; Shriberg,

ments from an agent's dialogue behaviors, sup-  Wade, and Price, 1992). Consider a comparison of two
ports comparisons among dialogue strategies,  train timetable information agents (Danieli and Gerbino,
enables the calculation of performance over  1995), where Agent A in Dialogue 1 uses an explicit con-
subdialogues and whole dialogues, specifies  firmation strategy, while Agent B in Dialogue 2 uses an

the relative contribution of various factors to implicit confirmation strategy:

performance, and makes it possible to compare

agents performing different tasks by normaliz- (1) User: I want to go from Torino to Milano.

ing for task complexity. Agent A: Do you want to go from Trento to Milano?
Yes or No?

. User: No.
1 Introduction

Recent advances in dialogue modeling, speech recognif2) User: | want to travel from Torino to Milano.

tion, and natural language processing have made it pos-  Agent B: At which time do you want to leave from

sible to build spoken dialogue agents for a wide vari- Merano to Milano?

ety of applicationﬂ. Potential benefits of such agents User: No, | want to leave from Torino in the

include remote or hands-free access, ease of use, natu- evening.

ralness, and greater efficiency of interaction. However,

a critical obstacle to progress in this area is the lack ofPanieli and Gerbino found that Agent A had a higher

a general framework for evaluating and comparing thefransaction success rate and produced less inappropriate

performance of different dialogue agents. and repair utterances than Agent B, and thus concluded
One widely used approach to evaluation is based ohat Agent A was more robust than Agent B.

the notion of a reference answer (Hirschman et al.,[1990). However, one limitation of both this approach and the

An agent's responses to a query are compared with &ference answer approach is the inability to generalize

predefined key of minimum and maximum reference anJesults to other tasks and environmerjts (Fraser,]1995).

swers; performance is the proportion of responses thaduch generalization requires the identification of factors

match the key. This approach has many widely acknowithat affect performancé (Cohen, 1p95; Sparck-Jones and

edged limitations[(Hirschman and Pao, 1993; Danieli etGalliers, 1996). For example, while Danieli and Gerbino

al., 1992;[Bates and Ayuso, 1993), e.g., although theréound that Agent As dialogue strategy produced dia-

may be many potential dialogue strategies for carryindogues that were approximately twice as long as Agent

out a task, the key is tied to one particular dialogue stratB’s, they had no way of determining whether Agent A's
egy. higher transaction success or Agent B’s efficiency was

—_— , more critical to performance. In addition to agent factors
We use the term agent to emphasize the fact that we are b g

evaluating a speaking entity that may have a personalitgdRe S!"Ch as dlalc_)gue strategy, task factors such as datab_ase
ers who wish to may substitute the word “system” whereverSiZe and environmental factors such as background noise

“agent” is used. may also be relevant predictors of performance.
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These approaches are also limited in that they cursuccess, and dialogue cost, all of which have been pre-
rently do not calculate performance over subdialogues agiously noted in the literature) into a single performance
well as whole dialogues, correlate performance with arevaluation function. The use of decision theory requires
external validation criterion, or normalize performancea specification of both the objectives of the decision
for task complexity. problem and a set of measures (known as attributes in
decision theory) for operationalizing the objectives. The
PARADISE model is based on the structure of objectives
(rectangles) shown in Figuﬂa 1. The PARADISE model
posits that performance can be correlated with a mean-
ingful external criterion such as usability, and thus that
the overall goal of a spoken dialogue agent is to maxi-
MAXIMIZE TASK mize an objective related to usability. User satisfaction

SUCCESS MINIMIZE COSTS ratings [Kamm, 19§5|; Shriberg, Wade, and Price, [1992;
olifroni et al., 1992) have been frequently used in the

MAXIMIZE USER SATISFACTION

literature as an external indicator of the usability of a di-
KAPPA — AATATIE alogue agent. The model further posits that two types
VEASURES VEASURES of factors are potential relevant contributors to user sat-

isfaction (namely task success and dialogue costs), and
that two types of factors are potential relevant contribu-

tors to costs|(Walker, 19P6).

In addition to the use of decision theory to create this
objective structure, other novel aspects of PARADISE
include the use of the Kappa coefficieht (Carletta, [L996;
Siegel and Castellan, 1988) to operationalize task suc-
cess, and the use of linear regression to quantify the rel-
Figure 1: PARADISE's structure of objectives for spo- ative contribution of the success and cost factors to user
ken dialogue performance satisfaction.

AGENT RESPONSE DELAY
INAPPROPRIATE UTTERANCE RATIQ
REPAIR RATIO
ETC.

NUMBER UTTERANCES
DIALOGUE TIME
ETC.

) ) The remainder of this section explains the measures
This paper describes PARADISE, a general frame<ovals in Figure 1) used to operationalize the set of objec-
work for evaluating spoken dialogue agents that ad+jyes, and the methodology for estimating a quantitative
dresses these limitations. PARADISE supports comparperformance function that reflects the objective structure
isons among dialogue strategies by providing a task repsection[2]1 describes PARADISE's task representation,
resentation that decoupletiatan agent needs to achieve yhich is needed to calculate the task-based success mea-
in terms of the task requirements fronow the agent  gyre described in Sectidn p.2. Sectfor] 2.3 describes the
carries out the task via dialogue. PARADISE uses acost measures considered in PARADISE, which reflect
decision-theoretic framework to specify the relative con-pqih the efficiency and the naturalness of an agent's dia-
tribution of various factors to an agent's overpdirfor-  |ogue behaviors. Sectidn p.4 describes the use of linear
mance Performance is modeled as a weighted functioryegression and user satisfaction to estimate the relative
of a task-based success measure and dialogue-based cghtripution of the success and cost measures in a sin-
measures, where weights are computed by correlatingje performance function. Finally, Sectipn]2.5 explains
user satisfaction with performance. Also, performance,qy performance can be calculated for subdialogues as

can be calculated for subdialogues as well as whole diye|| as whole dialogues, while Sectifn]2.6 summarizes
alogues. Since the goal of this paper is to explain angpe method.

illustrate the application of the PARADISE framework,

for expository purposes, the paper uses simplified do-

mains with hypothetical data throughout. Section 2 de2.1 TasksasAttribute Value Matrices

scribes PARADISE’s performance model, and Section 3

discusses its generality, before concluding in Section 4. A general evaluation framework requires a task represen-
tation that decoupleshatan agent and user accomplish

2 A Performance Model for Dialogue from howthe task is accomplished using dialogue strate-
gies. We propose that attribute value matrix (AVM)

PARADISE uses methods from decision theory (Keeneycan represent many dialogue tasks. This consists of the

and Raiffa, 1976 Doyle, 19p2) to combine a disparateénformation that must be exchanged between the agent

set of performance measures (i.e., user satisfaction, tasind the user during the dialogue, represented as a set of



ordered pairs of attributes and their possible vaﬂles. B1: Hello, Thisis Train Enquiry Service. DC,AC,DR,DT

; H H H H fica. Please speak after the tone. DC,AC,DR,DT
_ As a first |Ilgstr§\t|ve example,.c0n5|d_er a simplifica Which information do you need? DCAC.DR DT
tion of the train timetable domain of Dialogues 1 and Ul:  lwantto travel from Torino to Milano. ~ DC,AC

H H H H B2:  Atwhich time do you want to leave

2, where the_tlmetable only con_talns mformat!on about from Meran to Mianos DC.AC.DR
rush-hour trains between four cities, as shownin Table 1. u2:  No, I want to leave from Torino
This AVM consists of four attributes (abbreviations for . inthe evening. . DC, DR

X B3: Do you want to leave from Torino
each attribute name are also shoﬁri)] Table 1, these between 6 and 11 p.m? DC, DR
attribute-value pairs are annotated with the direction of =~ Pleaseanswer¥esorNo. e RT
information flow to represent who acquires the informa- B4:  Atrain leaves at 8 p.m. DT

tion, although this information is not used for evaluation.

During the dialogue the agent must acquire from the useleigure 3: Agent B dialogue interaction (Danieli and
the values of DC, AC, and DR, while the user must ac-Gerbino 1995)

quire DT.
attribute possible values information flow attnbute_ actgal value
depart-city (DC) Milano, Roma, Torino, Trento| to agent depart-city | Torino
arrival-city (AC) Milano, Roma, Torino, Trento to agent arrival-city MI|aU0
depart-range (DR)| morning,evening to agent depart—range evening
depart-time (DT) | 6am,8am,6pm,8pm to user depart-time | 8pm

Table 1: Attribute value matrix, simplified train timetable Table 2: Attribute value matrix instantiation, scenario
domain key for Dialogues 1 and 2

Al:  Hello, Thisis Train Enquiry Service. DC,AC,DR,DT dlalogue. . .
Please speak after the tone. DC,AC,DR,DT For example, assume that a scenario requires the user
Which information do you need? DC,AC,DR,DT . : : : :
UL Iwantto go from Torino to Milano. DCAC to f|n_d a train from Torino to_M|Iano that leaves in the_
A2: Do you want to go from Trento to Milano? ~ DC,AC evening, as in the longer versions of Dialogues 1 and 2 in
Yes or No? DC,AC ; ;
U2 No. DCAC F|gures 2 and E.Taple 2 con'galns an .AVM correspond-
A3: Do you want to leave from Trento? DC ing to a “key” for this scenario. All dialogues resulting
va o orhe? o from execution of this scenario in which the agent and
A4:  Where do you want to leave from? DC the user correctly convey all attribute values (as in Fig-
uU4: I want to leave from Torino. DC ;
A5 Do you want to leave from Torino? be ures_2 and 3) would have the same AVM as th_e scenario
Yes or No? DC key in Table 2. The AVMs of the remaining dialogues
U5:  Yes. DC ;
A6 Do you want to go to Milano? Ac would differ from _the key by at Iga;t one value. Thus,
Ué:  Yes. AC even though the dialogue strategies in Figures 2 and 3 are
A7:  Atwhich time do you want to leave? DR ; ; ;
U7 Iwant to travel in the evening. DR ra_1d|cally d|_ffe_rent,_the AVM task representation for these
A8: Do you want to leave between 6 and 9 p.m.? DR dialogues is identical and the performance of the system
PN R for the same task can thus be assessed on the basis of the
AVM representation.

A9:  There is atrain leaving at 8:00 p.m. DT

2.2 Measuring Task Success

Success at the task for a whole dialogue (or subdi-
alogue) is measured by how well the agent and user

. . achieve the information requirements of the task by the
Performance evaluation for an agent requires a corpus ) . . .
nd of the dialogue (or subdialogue). This section ex-

of dialogues between USErs and the age_nt, n Wh'.Ch usel%ains how PARADISE uses the Kappa coefficient (Car-
execute a set of scenarios. Each scenario execution ha%)

corresponding AVM instantiation indicating the task in- ea%ta, 1996} Siegel and Castellan, 11388) to operationalize

. ; ; the task-based success measure in Fifjure 1.
formation requirements for the scenario, where each at- - ;
The Kappa coefficienty, is calculated from a confu-

tribute is paired with the attribute value obtained via the . ) . :
sion matrix that summarizes how well an agent achieves

“For infinite sets of values, actual values found in the exper-the information requirements of a particular task for a set
imental data constitute the required finite set.

3The AVM serves as an evaluation mechanism only. We are  “These dialogues have been slightly modified from (Danieli
not claiming that AVMs determine an agent’s behavior oreerv and Gerbino, 1995). The attribute names at the end of each
as an utterance’s semantic representation. utterance will be explained below.

Figure 2: Agent A dialogue interaction (Danieli and
Gerbino, 1995)




KEY

DEPART-CITY ARRIVAL-CITY DEPART-RANGE DEPART-TIME
DATA | vl v2 v3 v4|vVv5 v6 v7 vB8| v9 vi0 | vil vi2 vi3 vi14
vl | 22 1 3
v2 29
v3 4 16 4 1
v4 1 1 5 11 1
v5 3 20
V6 22
v7 2 1 1 20 5
v8 1 1 2 8 15
v9 45 10
v10 5 40
vil 20 2
v12 1 19 2 4
v13 2 18
v14 2 6 3 21
sum | 30 30 25 15| 25 25 30 20| 50 50 25 25 25 25

Table 3: Confusion matrix, Agent A
KEY

DEPART-CITY ARRIVAL-CITY DEPART-RANGE DEPART-TIME
DATA | vl v2 v3 v4|vVv5 v6 v7 vB8| v9 vi0 | vil vi2 vi3 vi14
vl | 16 1 4 3 2
v2 1 20 1 3
v3 5 1 9 4 2 4 2
v4 1 2 6 6 2 3
v5 4 15 2 3
V6 1 6 19
v7 5 2 1 1 15 4
v8 1 3 3 1 2 9 1
v9 2 2 39 10
v10 6 35
vil 20 5 5 4
v12 10 5 5
v13 5 5 10 5
v14 5 5 11
sum | 30 30 25 15| 25 25 30 20 50 50 25 25 25 25

Table 4: Confusion matrix, Agent B

of dialogues instantiating a set of scenaﬂdéor exam- ing the course of the dialogue are reflected in the costs
ple, Tables 3 and 4 show two hypothetical confusion ma-associated with the dialogue, as will be discussed below.
trices that could have been generated in an evaluation of

100 complete dialogues with each of two train timetable The first matrix summarizes how the 100 AVMs rep-
agents A and B (perhaps using the confirmation strateresenting each dialogue with Agent A compare with
gies illustrated in Figures 2 and 3, respectiv@lyfhe  the AVMs representing the relevant scenario keys, while
values in the matrix cells are based on comparisons behe second matrix summarizes the information exchange
tween the dialogue and scenario key AVMs. Whenevewith Agent B. Labels v1 to v4 in each matrix represent
an attribute value in a dialogue (i.e., data) A¥vatches the possible values of depart-city shown in Table 1; v5
the value in its scenario key, the number in the approto v8 are for arrival-city, etc. Columns represent the key,
priate diagonal cell of the matrix (boldface for clarity) specifying which information values the agent and user
is incremented by 1. The off diagonal cells representwvere supposed to communicate to one another given a
misunderstandinghat are not corrected in the dialogue. particular scenario. (The equivalent column sums in both
Note that depending on the strategy that a spoken diaables reflects that users of both agents were assumed to
logue agent uses, confusions across attributes are possiave performed the same scenarios). Rows represent the
ble, e.g., “Milano ” could be confused with “morning.” data collected from the dialogue corpus, reflecting what
The effect of misunderstandings thaxe corrected dur-  attribute values were actually communicated between the

B a—— . i agent and the user.
° Confusion matrices can be constructed to summarize the

result of dialogues for any subset of the scenarios, atefu . . . ..
users or dialogues. Given a confusion matrix M, success at achieving the

SThe distributions in the tables were roughly based on perinformation requirements of the task is measured with

formance results if (Danieli and Gerbino, 11995). the Kappa coefficient (Carletta, 1996; Siegel and Castel-




lan, 1988): dialogue behaviors that should be minimized. A wide
P(A) — P(E) range of cost measures have been used in previous work;
1-P(E) these include pure efficiency measures such as the num-

P(A) is the proportion of times that the AVMs for the ber of turns or elapsed time to complete the task (Abella,

actual set of dialogues agree with the AVMs for the sce-Brown, and Buntschuh, 199¢; Hirschman et al., 1990;
nario keys, and P(E) is the proportion of times that theSMith and Gordon, 19py; Walker, 1996), as well as mea-
AVMs for the dialogues and the keys are expected to>U"es of qualitative phenomena such as inappropriate or
agree by chanc@When there is no agreement other than"€P&r utterances _(Danleh and _Gerblno, 1§995; Hirschman
that which would be expected by change= 0. When and Pao, 1993; Simpson and Fraser, 1993).
there is total agreement, = 1. « is superior to other PARADISE represents each cost measure as a func-
measures of success such as transaction success (Dantéln ¢; that can be applied to any (sub)dialogue. First,
and Gerbino, 1995), concept accuracy (Simpson angonsider the simplest case of calculating efficiency mea-
Fraser, 1993), and percent agreement (Gale, Church, arfires over a whole dialogue. For example clebe the
Yarowsky, 1992) becausetakes into account the inher- total number of utterances. For the whole dialogue D1 in
ent complexity of the task by correcting for chance ex-Figure 2,¢;(D1) is 23 utterances. For the whole dialogue
pected agreement. Thusprovides a basis for compar- D2 in Figure 3¢,(D2) is 10 utterances.
isons across agents that are perforndiffgrenttasks. To calculate costs over subdialogues and for some
When the prior distribution of the categories is un- of the qualitative measures, it is necessary to be able
known, P(E), the expected chance agreement between specify which information goals each utterance con-
the data and the key, can be estimated from the distritributes to. PARADISE uses its AVM representation to
bution of the values in the keys. This can be calculatedink the information goals of the task to any arbitrary
from confusion matrix M, since the columns representdialogue behavior, by tagging the dialogue with the at-

the values in the keys. In particular: tributes for the tasf]. This makes it possible to evaluate
. any potential dialogue strategies for achieving the task,
P(E) = Z(ﬁ)g as well as to_ evaluate dialogue strat_egles that operate at
T the level of dialogue subtasks (subdialogues).

wheret; is the sum of the frequencies in column i of M,

andT is the sum of the frequencies in Ny (+ ... +t,). SEGHENT:S1

P(A), the actual agreement between 'Fhe data.and the GOALS: D, AC, DR, DT

key, is always computed from the confusion matrix M: UTTERANCES: ALLA9
_ Z?:l M(ia Z)

Given the confusion matrices in Tables 3 and 4, P(E) * 2 *
= 0.079 for both agenﬁ_ For Agent A, P(A) = 0.795 SEGMENT: S2 SEGMENT: S5 SEGMENT: S6
andx = 0.777, while for Agent B, P(A) = 0.59 anel = GOALS. DC,AC GOALS: DR GOALS. DT
0.555, suggesting that Agent A is more successful than UTTERANCES: UL..UB |  ||UTTERANCES: A7..U8 UTTERANCES: A9

B in achieving the task goals.

2.3 Measuring Dialogue Costs

As shown in Figurﬂl, performance is also a function of a SEGNENT:S3 SEGNENT: S
combination of cost measures. Intuitively, cost measures|| g5 ¢ COALS:AC
should be calculated on the basis of any user or agent| TeaaceS: A3.U5| | UTTERANCES: A6..U5

"k has been used to measure pairwise agreement amon
coders making category judgments (Carletta, L996; Krippen
dorf, 1980;[Siegel and Castellan, 1388)- Thus, the observegtigure 4: Task-defined discourse structure of Agent A

user/agent interactions are modeled as a coder, and thie ide&ialogue interaction
interactions as an expert coder.
8Using a single confusion matrix for all attributesasinTa-
bles 3 and 4 inflates when there are few cross-attribute confu- ~ °This tagging can be hand generated, or system generated
sions by making P(E) smaller. In some cases it might be desirand hand corrected. Preliminary studies indicate thalgify
able to calculates first for identification of attributes and then for human tagging is higher for AVM attribute tagging than

for values within attributes, or to averagdor each attribute to  for other types of discourse segment tagging (Passonnehu an
produce an overalt for the task. Litman, 1997] Hirschberg and Nakatani, lb%).




Consider the longer versions of Dialogues 1 and 2 in
Figures 2 and 3. Each utterance in Figures 2 and 3 has n
been tagged using one or more of the attribute abbre-  Performance = (a*x N(k)) — Zwl * N ()
viations in Table 1, according to the subtask(s) the ut- i=1
terance contributes to. As a convention of this type of . . .
Here o is a weight onk, the cost functions:; are

tagging, utterances that contribute to the success of th\(/aveighted byw;, andA” is a Z score normalization func-

whole dialogue, such as greetings, are tagged with all th
attributes. Since the structure of a dialogue reflects thgon (Cohen, 1.9 5.)' S
The normalization function is used to overcome the

structure of the tasi (Carberry, 1989; Grosz and Sidner
1986 {Titman and Allen, 1990), the tagging of a dialogueproblem that the values ef are not on the same scale as

by the AVM attributes can be used to generate a hierart” and that the cost measurgsmay also be calculated

chical discourse structure such as that shown in Figure qver widely varying scales (e.g. response delay could

for Dialogue 1 (Figure 2). For example, segment (subdi-be measured using seconds while, in the example, costs
9 9 ) bi€, seg were calculated in terms of number of utterances). This

alogue) S2 in Figure 4 is about both depart-city (DC) and ; . N,
arrival-city (AC). It contains segments S3 and S4 within 5;02t)|:£r|:_ea3”y solved by normalizing each factoo

it, and consists of utterances Ul UG. T —TF
Tagging by AVM attributes is required to calculate N(z) =
costs over subdialogues, since for any subdialogue, tas\%herea
attributes define the subdialogue. For subdialogue S4 in *
Figure 4, which is about the attribute arrival-city and con-

Oy
is the standard deviation far

sists of utterances A6 and Ug,(S4) is 2. usir ageK‘ U? T = ‘#”fé = ‘#res?

Tagging by AVM attributes is also required to calcu- 2 N 2 2
late the cost of some of the qualitative measures, such as 4 A 3|1 40 20
number of repair utterances. (Note that to calculate such : A sl 2 o
costs, each utterance in the corpus of dialogues must also 7 A 1| 0.46 75 30
be tagged with respect to the qualitative phenomenon in g g é (1)-19 62 38
guestion, e.g. whether the utterance is a rdpirFor 10 B 51 15 1
example, let; be the number of repair utterances. The o 5 o1 o 0>
repair utterances in Figure 2 are A3 through U6, thus 13 B 1] 019 45 18
c2(D1) is 10 utterances ang(S4) is 2 utterances. The ig E ; 8-‘1‘3 22 ig
repair utterance in Figure 3 is U2, but note that according 16 B 2 | 046 40 18
to the AVM task tagging, U2 simultaneously addresses MZi'n‘E’é’) /g 32 8-22 ‘2‘57’-2 1571
the information goals for depart-range. In general, if an Mean | NA | 275 | 075 38.6 185

utterance U contributes to the information goals of N dif-
ferent attributes, each attribute accounts for 1/N of anyfable 5: Hypothetical performance data from users of
costs derivable from U. Thusy(D2) is .5. Agents A and B

Given a set of;, it is necessary to combine the dif-

ferent cost measures in order to determine their relative Tq jllustrate the method for estimating a performance
contribution to performance. The next section explainsynction, we will use a subset of the data from Tables
how to combines with a set ofc; to yield an overall per- 3 and 4, shown in Table 5. Table 5 represents the re-
formance measure. sults from a hypothetical experimentin which eight users
were randomly assigned to communicate with Agent A
and eight users were randomly assigned to communicate
Given the definition of success and costs above and th@ith Agent B. Table 5 shows user satisfaction (US) rat-
model in Figurd]1, performance for any (sub)dialogue Dings (discussed below);, number of utterances (#utt)
is defined as follow§]] and number of repair utterances (#rep) for each of these
10previous work has shown that this can be done with highS€rS: Users 5 and 1_1 correspond to_the dialogues in Fig-
reliability (Hirschman and Pao, 1993). ures 2 :_;md 3 respectlvely. To nprmalmefor user 5, we
\We assume an additive performance (utility) function be- determine thaty is 38.6 andr., is 18.9. ThusN(cy) is
cause it appears thatand the various cost factors are util- -0.83. SimilarlyN(c;) for user 11 is -1.51.
ity independent and additive independent (Keeney and®&aiff T4 estimate the performance function, the weights

1976). It is possible however that user satisfaction data co ) L .
lected in future experiments (or other data such as wilk andw; must be solved for. Recall that the claim implicit

to pay or use) would indicate otherwise. If so, continuingof  a reworking of the model shown in Figdre 1, or the inclusion of
an additive function might require a transformation of tbéad  interaction terms in the modgl (Cohen, 1995).

2.4 Estimating a Performance Function




in Figure[jr was that the relative contribution of task suc-case, & test shows that differences are only significant
cess and dialogue costs to performance should be calcat the p< .07 level, indicating a trend only. In this case,
lated by considering their contribution to user satisfac-an evaluation over a larger subset of the user population
tion. User satisfaction is typically calculated with sur- would probably show significant differences.

veys that ask users to specify the degree to which they

agree with one or more statements about the behavior g5 Application to Subdialogues

the performance of the system. A single user satisfactio%inCe boths ande; can be calculated over subdialogues,

measure can be calculgted from a single questlon, Or_aﬁerformance can also be calculated at the subdialogue
the mean of a set of ratings. The hypothetical user satisy g by using the values for and w; as solved for

. . . . K3
faction ratings shown in Table 5 range from a high of 6 ), e “This assumes that the factors that are predictive of

to allow of 1. ¢ dial ; hich isfact global performance, based on US, generalize as predic-
Given a set of dialogues for which user satisfaction,, ¢ qf |cq| performance, i.e. within subdialogues de-

EUIIS),tI; and _thﬁtset Ogi have bbeen ?Olls?ed e_xperimlf_n- fined by subtasks, as defined by the attribute tagging.
ally, the weightsy andw; can be solved 1or using mutti- Consider calculating the performance of the dialogue

glgg'tn;acrgggﬁzi'g&“giuIgg)e(;'gsgzgiengrfﬁg':)eqaﬁir\?jcjgﬁ_strategies used by train timetable Agents A and B, over
N €19 s 9 . the subdialogues that repair the value of depart-city. Seg-
tribution of each predictor factor in accounting for the

. ) : . . t S3 (Fi 4)i le of such bdial
variance in a predicted factor. In this case, on the bas Jnen (Figure 4) is an example of such a subdialogue

S . . j\/lth Agent A. As in the initial estimation of a perfor-
of the model in Flgureﬂl, US is treated as the predicted, function, our analysis requires experimental data,
factor. Normalization of the predictor factors &ndc;)

. . .. ,namely a set of values for andc¢;, and the application
to their Z scores guarantees that the refative magnltudgf the Z score normalization function to this data. How-
of the coefficients directly indicates the relative contri-

bution of each factor. Regression on the Table 5 data fOEver, the values for: andc; are now calculated at the
’ ; ubdialogue rather than the whole dialogue level. In ad-
both sets of users tests which facters#utt, #rep most g 9

stronalv predicts US dition, only data from comparable strategies can be used
gyp T to calculate the mean and standard deviation for normal-
In this illustrative example, the results of the regres-

. . . ization. Informally, a comparable strategy is one which
sion V.V'th. ?" factors included shows that onhyand #rep applies in the same state and has the same effects.
are significant (p< .02). In order to develop a perfor-

. ) ) S For example, to calculate for Agent A over the sub-
mance function estimate that includes only significant . . .

o : .dialogues that repair depart-city, P(A) and P(E) are com-
factors and eliminates redundancies, a second regression

including only significant factors must then be done. Inputed using only the subpart of Table 3 concerned with

) S - epart-city. For Agent A, P(A) = .78, P(E) = .265, and
this case, a second regression yields the predictive equ% = 70. Then, this value of is normalized using data

tion: from comparable subdialogues with both Agent A and
Performance = .40\ (k) — .78\ (c2) Agent B. Based on the data in Tables 3 and 4, the mean
kis .515 andr is .261, so thatV (k) for Agent Ais .71.
i.e., a is .40 andw- is .78. The results also showis To calculatec, for Agent A, assume that the average

significant at p< .0003, #rep significant at g .0001,  nymber of repair utterances for Agent A's subdialogues

and the combination of and #rep account for 92% of  hat repair depart-city is 6, that the mean over all compa-

the variance in US, the external validation criterion. Thergple repair subdialogues is 4, and the standard deviation
factor #utt was not a significant predictor of performanceg 2 79. ThenV(cy) is .72.

in part because #utt and #rep are highly redundant. (The | ¢t agent A's repair dialogue strategy for subdia-

correlation between #utt and #rep is 0.91). __ logues repairing depart-city besRand Agent B’s repair
Given these predictions about the relative contnbutlonStrategy for depart-city be )R Then using the perfor-

of different factors to performance, it is then possible j,5nce equation above, predicted performance foisR
to return to the problem first introduced in Sectign 1:

given potentially conflicting performance criteria such as
robustness and efficiency, how can the performance of
Agent A and Agent B be compared? Given values for ) ,
« andw;, performance can be calculated for both agents For Agent B, using the appropriate subpart of Table
using the equation above. The mean performance of A © calculates, assuming that the average number of
is -.44 and the mean performance of B is .44, suggestinQEpart'C'ty repair utterances is 1.38, and using similar
that Agent B may perform better than Agent A overall. 12This assumption has a sound basis in theories of dialogue
The evaluator must then however test these perforstrycture [Carberry, 19B; Grosz and Sidner, [1986; Litnmah a

mance differences for statistical significance. In thisAllen, 1990), but should be tested empirically.

Performance(Ra) = .40 % .71 — .78 % .72 = —0.28




calculations, yields of the predictor variables, as illustrated in the applmati
of PARADISE to subdialogues.
Performance(Rp) = .40 * —.71 — .78 x —.94 = 0.45 Given the current state of knowledge, it is important to

. ) emphasize that researchers should be cautious about gen-
Thus the results of these experiments predict that whegizing a derived performance function to other agents

an agent needs to choose between the repair strategy @t t5ks.  performance function estimation should be

Agent B uses and the repair strategy that Agent A Use§one jteratively over many different tasks and dialogue
for repairing depart-city, it should use Agent B's strategy gyategies to see which factors generalize. In this way,

Rp, since the performance(f}is predicted to be greater ¢ fie|q can make progress on identifying the relation-

than the performangt_a(ﬂ. ship between various factors and can move towards more
Note that the ability to calculate performance over e ictive models of spoken dialogue agent performance.

subdialogues allows us to conduct experiments that si-
multaneously test multiple dialogue strate_gies. For ex3 Generality

ample, suppose Agents A and B had different strate-

gies for presenting the value of depart-time (in additionIn the previous section we used PARADISE to eval-

to different confirmation strategies). Without the abil- uate two confirmation strategies, using as examples
ity to calculate performance over subdialogues, it wouldfairly simple information access dialogues in the train

be impossible to test the effect of the different presentimetable domain. In this section we demonstrate that
tation strategies independently of the different confirma-PARADISE is applicable to a range of tasks, domains,

tion strategies. and dialogues, by presenting AVMs for two tasks involv-
ing more than information access, and showing how ad-
2.6 Summary ditional dialogue phenomena can be tagged using AVM

We have presented the PARADISE framework, and havettributes.
used it to evaluate two hypothetical dialogue agents in a

simplified train timetable task domain. We used PAR- [“atiribute possible values information flow
: . : depart-city (DC) Milano, Roma, Torino, Trento to agent
AD_|SE .tO derive a pgrformance functlon for this task, t_’y arrival-city (AC) Milano, Roma, Torino, Trento| to agent
estimating the relative contribution of a set of potential | depart-range (DR)| morming,evening to agent
: : : _| depart-time (DT) | 6am,8am,6pm,8pm to user
predictors to user satisfaction. The PARADISE method requesttype (RT) | reserve, purchase to agent

ology consists of the following steps:
Table 6: Attribute value matrix, train timetable domain

o definition of a task and a set of scenarios; with requests
e specification of the AVM task representation;

« experiments with alternate dialogue agents for the First, consider an extension of the train timetable task,
where an agent can handle requests to reserve a seat or

task; purchase a ticket. This task could be represented using

e calculation of user satisfaction using surveys; the AVM in Table 6 (an extension of Table 1), where the
) ) agent must now acquire the value of the attribute request-

e calculation of task success using type, in order to know what to do with the other informa-

e calculation of dialogue cost using efficiency and tion it has acquired.
qualitative measures;

Ul: I want to go from Torino to Roma DC,AC
e estimation of a performance function using linear Cl Apprommatelywhat time of day would you like to travel? RD
. . . . U2:  What are the options? DR
regression and values for user satisfactioand di- €2 Morning or evening. DR
alogue Costs; U3:  Are those departure times? DR
C3: Yes. DR
. . . U4:  Id like to leave in the morning. DR
e comparison with other agents/tasks to determine ca: Train 702 leaves Torino Porto at 8 a.m. DT
which factors generalize; U5: Please reserve me a seat on that train. RT
o refinement of the performance model. Figure 5: Hypothetical Agent C dialogue interaction

Note that all of these steps are required to develop the
performance function. However once the weights in the Figure 5 presents a hypothetical dialogue in this ex-
performance function have been solved for, user satisfadended task domain, and illustrates user utterance types
tion ratings no longer need to be collected. Instead, preand an agent dialogue strategy that are very different
dictions about user satisfaction can be made on the basfsom those in Figures 2 and 3. First, Agent C in Figure 5



uses a “no confirmation” dialogue strategy, in contrast toferent dialogue strategies, and tagged each dialogue ac-

the explicit and implicit confirmation strategies used in cording to the following subtask structL@:

Figures 2 and 3. Second, Figure 5 illustrates new types

of userutterances that do not directly further the infor-

mational go_als of the task. In U2,_the user asks the agent , aAgsessment (A)—establish the current behavior

a wh-question about the DR attribute itself, rather than

providing information about that attribute’s value. Since e Diagnosis (D)—establish the cause for the errant

U2 satisfies a knowledge precondition related to answer-  behavior

ing C1, U2 contributes to the DR goal and is tagged as

such. InU3, the user similarly asks a yes-no question that ®

addresses a subgoal related to answering C1. Finally, U5

illustrates a user request for an agentaction, and is tagged , Test (T)—establish that the behavior is now correct

with the RT attribute. The value of RT in the AVM in-

stantiation for the dialogue would be “reserve.” Our informational analysis of this task results in the
Second, consider the very different domain and task®VM shown in Table 7. Note that the attributes are al-

of diagnosing a fault and repairing a circuit (Smith and most identical to Smith and Gordon'’s list of subtasks.

Gordon, 1997). Figure 6 presents one dialogue from thi€ircuit-ID corresponds to Introduction, Correct-Circuit

e Introduction (I)—establish the purpose of the task

Repair (R)—establish that the correction for the er-
rant behavior has been made

domain. Behavior and Current-Circuit-Behavior correspond to
Assessment, Fault-Type corresponds to Diagnosis, Fault-
1.C:  Thisis the circuit fix it shop. ID,.cB,RB,FT,FC,T Correction corresponds to Repair, and Test corresponds

How may | help you? ID.CB.RB,FT.FC.T  tg Test. The attribute names emphasize information ex-

2. U: | want to fix a circuit. ID,CB,RB,FT,FC, T . . .
3.C:  Whatis the ID of the circuit? ID change, while the subtask names emphasize function.
4. U: Rs111. ID
5.C: I am familiar with that circuit. CB
The LED is supposed to be displaying attribute possible values
alternately flashing one and seven. CB Circuit-1D (ID) RS111, RS112, ...
6.U:  TheLEDis off. RB Correct-Circuit-Behavior (CB)| Flash-1-7, Flash-1, ...
7.C:  Whatis the switch at when the LED is off? RB Current-Circuit-Behavior (RB)| Flash-7
8.U:  The switch is down. RB Fault-Type (FT) MissingWire84-99, MissingWire88-99, ..
9.C:  Putthe switch up. RB Fault-Correction (FC) yes, no
10.U:  Okay. RB Test (T) yes, no
11. C: Put the knob to one zero. RB
12. U: Okay.‘ ) ) RB
13.C: Whatis the LED displaying? RB Table 7: Attribute value matrix, circuit domain
14. U:  LEDis displaying only a flashing seven. RB
15. C: Is there a wire between connector eight four
and connector nine nine? FT ) ) . .
16.U:  No. FT Figure 6 is tagged with the attributes from Table 7.
17.C: Addawire between connector eight four Smith and Gordon’s tagging of this dialogue according
and connector nine nine. FC A d
18.U:  Done. FC to their subtask representation was as follows: turns 1-
19.C: Whatis the LED displaying? T 4 were |, turns 5-14 were A, turns 15-16 were D, turns
20. U:  Alternately flashing one and seven. T
21.C:  Isthe one on the LED displaying for 17-18 were R, and turns 19-35 were T. Note that there
22 U il'gngef period of ime? TT are only two differences between the dialogue structures
23.C: Isthe seven on the LED displaying yielded by the two tagging schemes. First, in our scheme
ot U fﬁga longer period of ime? TT (Figure 6), the greetings (turns 1 and 2) are tagged with
25.C:  Putthe knob to zero. T all the attributes. Second, Smith and Gordon’s single tag
26.U:  Okay. T H i H H
57.C. Whatis the LED displaying? T A corresponds t.o two attribute tags in Table 7, W.hl(.:h in
28.U:  Alternately displaying one and seven. T our scheme defines an extra level of structure within as-
29. C: Isthe one on the LED displaying sessment subdialogues
for a longer period of time? T :
30.U:  Yes. T . .
31.C:  Putthe switch down. T 4 Discussion
32. U:  The switch is down. T
33.C:  Whatis the LED displaying? T .
34U Nothing. splaying - This paper presented the PARADISE framework for
35.C: Thecircuitis working correctly. Good-bye. T evaluating spoken dialogue agents. PARADISE is a gen-

eral framework for evaluating spoken dialogue agents

Figure 6: A circuit domain dialogue (Smith and Gordon, that integrates and enhances previous work. PARADISE
1997), with AVM tagging

Smith and Gordon collected 144 dialogues for this

supports comparisons among dialogue strategies with a
task representation that decouplelsat an agent needs

3They report ax of .82 for reliability of their tagging

task, in which agent initiative was varied by using dif- scheme.



to achieve in terms of the task requirements froaw

and Joshi, 1982; Pollack, Hirschberg, and Webber,|1982;

the agent carries out the task via dialogue. Furthermorgloshi, Webbe

r, and Weischedel, 1984; Chu-Carrol and

this task representation supports the calculation of perCarberry, 199
formance over subdialogues as well as whole dialoguesvaluated as t
In addition, because PARADISE’s success measure noipect of a dialo

5), very few of these strategies have been
D whether they improve any measurable as-
gue interaction. As we have demonstrated

malizes for task complexity, it provides a ba
paring agents performingjfferenttasks.

The PARADISE performance measure is
both task success:] and dialogue costs:y),
a number of advantages. First, it allows us
performance at any level of a dialogue, si
can be calculated for any dialogue subtask
formance can be measured over any subta
dialogue strategies can range over subdial
whole dialogue, we can associate performan
vidual dialogue strategies. Second, becaus
measures takes into account the complexity
comparisons can be made across dialogue
x allows us to measure partial success at
task. Fourth, performance can combine b
and subjective cost measures, and specifie
uate the relative contributions of those cos
overall performance. Finally, to our knowle
the first to propose using user satisfaction t
weights on factors related to performance.

In addition, this approach is broadly inte
corporating aspects of transaction success,
racy, multiple cost measures, and user satisf
framework, transaction success is reflecte
sponding to dialogues with a P(A) of 1. Our p
measure also captures information similar to|
curacy, where low concept accuracy scores
either higher costs for acquiring informatio
user, or lower scores.

One limitation of the PARADISE approach
task-based success measure does not refl
solutions might be better than others. For
the train timetable domain, we might like our
success measure to give higher ratings to ag
gest express over local trains, or that provid
formation that was not explicitly requested,
since the better solutions might occur in dia
higher costs. It might be possible to address
tion by using the interval scaled data version
pendorf, 1980). Another possibility is to sim
tute a domain-specific task-based success nf
performance model fot.

The evaluation model presented here ha
plications in apoken dialogue processing.
that the framework is also applicable to
logue modalities, and to human-human task-

is for com-here, any dialpgue strategy can be evaluated, so it should
be possible to]show that a cooperative response, or other

function ofcooperative strategy, actually improves task performance

nd has by reducing cpsts or increasing task success. We hope

to evaluatéhat this framgwork will be broadly applied in future di-

@andc;  alogue researgh.
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